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We have CD-0! 

•  Strongly endorsed by P5 in May 2008: 
–  “The panel recommends pursuing the muon-to-

electron conversion experiment …. under all budget 
scenarios considered by the panel.” 

•  Stage I Approval from Fermilab Directorate 
–  November 2008. 

•  Critical Decision 0 (CD-0) 
–  “Approval of Mission Need” 
–  Received November 24, 2009. 
–  This means DOE has said they want to do Mu2e. 
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The Mu2e Collaboration 
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•  Conclusions. 
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•  Initial state: muonic atom. 
•  No neutrinos in the final state 
•  Coherent = intact nucleus; gamma coupling proportional to Z. 
•  Standard Model rate is non-zero!  But is unmeasurably low. 
•  Many scenarios with new physics predict measurable rates. 
•  Sensitive to New Physics with masses up to O(10,000 TeV). 



A Word of Caution 

•  The MEG 
Collaboration is doing 
that experiment. 

•  See their web site: 

•  Or check SPIRES for 
publications by the 
MEGA Collaboration. 
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µ− → e−γ
http://meg.web.psi.ch 



•  Single mono-energetic electron. 
–  Energy O(Mµ). 
–  Depends on Z of target. 

•  Recoiling nucleus (not observed). 
–  Coherent: nucleus stays intact. 

•  Charged Lepton Flavor Violation (CLFV) 
•  Related decays: 
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Why Do Mu2e? 

•  Access physics beyond the Standard Model (SM). 
–  Precision measurements and searches for ultra-rare processes 

complement direct searches at the highest available energies. 

•  Negligible standard model backgrounds. 
–  Wide discovery window. 
–  Any non-zero observation is evidence for physics beyond SM. 

•  Violates conservation of lepton family number. 
–  Already observed in neutrino sector. 
–  Addresses the puzzle of generations. 
–  Strength (or absence) of particular CLFV signals can help remove 

ambiguities from new physics signals seen elsewhere. 

•  Overlap with the physics explored by measuring muon g-2. 
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Mu2e in A Few Pages 

•  Make muonic Al. 
•  Watch it decay: 

– Muon decay 
•  Continuous Ee spectrum. 

– Muon capture on nucleus: 60% 
•  Nuclear breakup: 2n, 2γ, 0.1 p 

–  Signal: 
•  Mono-energetic Ee ≈ 105 MeV 
•  At endpoint of continuous spectrum. 

•  Measure Ee spectrum. 
–  Is there a bump at the endpoint? 
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Nuclear radius ≈ 4 fm 
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µ!

Bohr radius ≈ 20 fm 

Lifetime: 864 ns 

For Al: 



Decay-in-Orbit: Dominant Background 

12/1/2009 Kutschke/Mu2e 11 

DIO Rate ≈ (Emax-E)5 

1.5×10-15 DIO e- are with 2 MeV of endpoint. 

Mµ/2 
Mµ 

Reconstructed Momentum (MeV) 

Signal with energy 
loss and resolution. 

DIO tail 
“Perfect” Signal 



What do We Measure? 

•  Numerator: 
–  Do we see an excess at the Ee end point? 

•  Denominator: 
–  Normal muon capture on Al. 

•  Sensitivity for a 2 year run ( 2×107 seconds ). 
–   ≈ 2.3 ×10-17 single event sensitivity. 
–  < 6 ×10-17 limit at 90% C.L.  

•  10,000 × better than previous limit (SINDRUM II). 
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How do you measure 2.3×10-17 ? 
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No hits in detector 

Reconstructable tracks 

Some hits in detector. 
Tracks not reconstructable. 

Beam’s-eye view of a generic Tracker; 
magnetic field into the page. 

Instrumented Region 

Target Foils 
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pcosα = q•B •R
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CLFV in Muon Decays 
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µ− → e−γ
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µ− → e−e+e−

€ 

µ−N→ e−N

•  Loops shown with  
SUSY; also works 
with heavy ν. 

•  If loops dominate 
over contact terms, 
then rates follow     
≈ 400: 2: 1 

•  Contact terms do 
not produce µeγ; 
so conversion can 
dominate over 
µeγ .  

CLFV:  Charged Lepton Flavor Violation. 



History of µ LFV Measurements 
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Pontecorvo,  6£10‐2 in 1948 
Effective Mass Reach 1.2 TeV 

1.2£10-11 (MEGA  µ!e°) 

 7£10-13 (Sindrum II on Au) 
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Rates in the Standard Model 

•  With massive neutrinos, non-zero rate in SM.   
•  Too small to observe. 
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LFV and SUSY at the LHC 

•  For low energy SUSY, 
accessible at LHC:  
Rµe ≈ O(10-15) 

•  At Mu2e this same 
physics typically gives: 
–  ≈ O(40) events on a 

background of ≈ 0.5 
events. 
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CLFV in Tau Decays 
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SM ~ 10-40 SM ~ 10-14 

Beyond SM Rates higher 
than for muon decay; 
milder GIM suppression. 

But only O(109 tau/year) at B 
factories, compared to 1011 
muon/s at Mu2e/COMET.   

•  BaBar/Belle/CLEO working on CLFV in tau decay. 
•  Also in B and D decay. 



Example of SUSY in Tau LFV 
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L. Calibbi, A. Faccia, A. Masiero, S. Vempati hep-ph/0605139 

Neutrino-Matrix Like (PMNS) 

Minimal Flavor Violation(CKM) 

Super B at Frascati 

•  tanβ=10 
•  SO(10) 
•  ν masses:  see-saw. 

A CLFV signal can 
help  resolve 
ambiguities in LHC 
data. 



Example of SUSY in Muon LFV 
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Neutrino-Matrix Like (PMNS) 

Minimal Flavor Violation(CKM) 

Mu2e 

Current 

Project X 

L. Calibbi, A. Faccia, A. Masiero, S. Vempati hep-ph/0605139 

•  tanβ=10 
•  SO(10) 
•  ν masses:  see-saw. 

A CLFV signal can 
help  resolve 
ambiguities in LHC 
data. 



Contributions to µe Conversion 
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 See Flavour physics of leptons and dipole moments, arXiv:0801.1826 

Sensitive to mass scales up to O(10,000 TeV)! 

Do not contribute to µ→eγ    



Parameterizing CLFV 
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Loops Contact terms 

Contributes to µ→eγ  Does not produce µ→eγ  

SUSY and massive neutrinos Exchange of a heavy particle 

Dominates if κ<<1 Dominates if κ>>1 



Sensitivity to High Mass Scales 
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Loops Contact terms 

Dominates if κ<<1 Dominates if κ>>1 

SUSY;  massive neutrinos Exchange of a new 
massive particle 

Contributes to µ→eγ  

€ 

Γ(µN→ eN)
>> Γ(µ → eγ)

€ 

Γ(µ → eγ)
≈ 300 Γ(µN→ eN)

Does not produce µ→eγ  

κ 

MEGA SINDRUM II 

Mu2e 

Mu2e  at Project X 

MEG 

Λ 
(T

eV
) 
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A Backscattered Muon Beam 
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2.5 T 

5.0 T 

2.0 T 

Proton Beam 

Graded Solenoids: 
Magnetic Mirror Tracker + ECAL: Uniform 1.0 T 

1.0 T 



Production Solenoid 
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Collimators 

Proton Beam 

€ 

p Au→π−X → µ−X

π and µ captured 
into helical 
trajectories 

Production Target 

Superconducting Coils 
Heat and Radiation Shield 



Transport Solenoid 
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13.1 m along axis × ~0.25 m 

•  Curved solenoid: 
•  Eliminates line-of-

sight transport of 
photons and neutrons. 

•  Negative/position and 
particles shift up/
down. 

•  Collimators sign 
and momentum 
select the beam. 

Few µ+ transmitted. 



Particle Content of Muon Beam 

•  Plus pions, which 
are an important 
source of 
background. 
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Detector Solenoid and Detector 
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B=1.0 T uniform field in Tracker + ECal 

B=1.2 T 
B=2.0 T 

 In graded field 
Precision momentum 
measurement: 

Trigger + confirmation 
of a real track. 

Require: 
σ(p) ≈ 150 keV at p=105 MeV 



At the Stopping Target 
•  Pulse of low energy µ- on thin Al foils. 
•  1 stopped µ- per 400 protons on production target. 

–  X-ray cascade emitted during capture: normalization! 

•  Electrons pop out of foils ( lifetime of 864 ns ) 
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•  17 target foils 
•  200 microns thick 
•  5 cm spacing 
•  Radius: 

–  ≈10. cm at upstream 
–  ≈6.5 cm at downstream 



Detector  
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•  3 candidate trackers: 
–  L-Tracker (shown) 
–  T-Tracker 
–  I-Tracker 

Useful tracks make 2 or 3 
turns inside the tracker. 



L-Tracker (L=Longitudinal)  
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•  Octagon  + vanes. 
•  ≈ 2800 axial straws in vacuum  

•  ≈ 2.6 m long; 5 mm diameter 
•  25 µm wall thickness 

•  3 layers; hex close packed. 
•  Resistive walls on outer layers. 
•  Cathode pads for z position. 

•  pT < 55 MeV curls inside octagon. 
•  Issues: 

•  Mechanical design; especially the 
cathode sheets. 

•  High rates on resistive straws not 
yet demonstrated. 

•  Enough measurements/track?   

XY Cross-section of LTracker  



T-Tracker (T=Transverse) 
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•  ≈ 13,000 straws in vacuum. 
•  70-130 cm long; 5 mm diameter. 
•  260 sub-planes;  ≈ 60 straws each. 
•  Conducting straws 

•  Rates demonstrated in KTeV. 
•  Possible charge division? 
•  Straw ends are outside of the fiducial 

volume: support and readout easier. 
•  Issues: 

•  Robust pattern recognition not yet 
demonstrated. 
•  High priority to do so. 



I-Tracker (I=Italian) 

•  Proposed by group from INFN Lecce. 
•  KLOE style cluster counting drift chamber. 

–  Axial and stereo layers. 
–  Central region empty ( as with L and T ). 

•  Advantage: 
–  Robust pattern rec.;  many measurements per track. 

•  Issues: 
– Material budget in upstream endplate. 
–  Rates. 
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Crystal Calorimeter 
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•  1024 PbWO4 crystals. 
•  3.5×3.5×12 cm 

•  σ(E)/E ≈ 5 MeV 
•  Main job is to trigger on 

interesting tracks. 
•  Spatial match of extrapolated 

track will help reject badly mis-
reconstructed tracks. 

•  Most tracks from DIO curl inside. 
•  Pisa and LNF groups evaluating LXe which might 

provide good enough σ(E/p) to be interesting. 



Other Systems 

•  Active Cosmic Ray Veto 
–  3 Layers of 1 cm thick scintillator;  

•  MINOS Style WLS fiber readout. 

–  Requirement: 99.99% efficiency to veto cosmic rays. 

•  Muon Capture Monitor 
–  One way to get at the denominator in Rµe. 
– Measure X-ray lines from muon capture on Al. 
–  Ge detector located downstream of main beam dump. 
–  Views target foils via tiny bore holes. 
–  One way to get denominator of Rµe. 
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One Cycle of the Muon Beamline 
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•  µ- accompanied by e-, e+, π-, …, which make backgrounds 
•  “Extinction” required to reduce backgrounds. 

•  1 out of time proton per 109 in time protons. 
•  Lifetime of muonic Al: 864 ns. 



Proton Delivery and Economics 
•  Reuse existing Fermilab 

facilities with modest 
modifications. 

•  p-bar complex:  2 rings. 
–  Use one ring as a “stash”. 
–  Slow spill from the other. 
–  90% duty cycle slow spill. 
–  Other schemes under study. 

•  Sharing p’s with NOVA: 
–  NOVA 12/20 booster cycles. 
–  Mu2e will use 6/20 cycles. 
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Making a stable, slow spill with a very intense proton 
beam is a big challenge. 
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Defining the Signal Region 
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Signal 
Region 

Low Edge of Signal Region 
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•  There is an irreducible background component. 
•  In addition, mis-measured DIO events can be 

reconstructed in the signal region.  Critical to understand 
high side tails in the momentum resolution function. 

for Rµe = 10-16 



Major Backgrounds 

•  From stopped µ-  
–  Decay in orbit (DIO) close to end point. 

•  Irreducible component. 
•  Mismeasured DIOs can smear into the signal region. 

•  Beam related ( aka “prompt”): 
–  Radiative π- capture. 
–  µ- decay in flight + scatter in target. 
–  e- scattering out of beam. 

•  Cosmic rays 

12/1/2009 Kutschke/Mu2e 42 



Radiative π- Capture 

•  End-point of Eγ spectrum is m(π). 
•  Asymmetric conversions (internal or in material) 

can produce electrons at all energies up to m(π). 
–  Includes the signal region. 

•  Believed to be the limiting background in 
SINDRUM II 

•  Mitigate by using pulsed beam with excellent 
extinction. 
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π−N(A,Z)→γX



Previous Best Experiment 

•  SINDRUM II 
•  Rµe < 6.1×10-13 

@90% CL 
•  2 events in signal 

region 
•  Au target: different 

Ee endpoint than 
Al. 
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W. Bertl et al, Eur. Phys. J. C 47, 337-346 (2006)  
HEP 2001 W. Bertl – SINDRUM II Collab  



Backgrounds for 2×107 s Running 

Source Events Comment 
µ decay in orbit  0.225 
Radiative π- capture* 0.063 From protons during detection time 
Beam electrons* 0.036 
µ decay in flight* 0.036 With scatter in target 
Cosmic ray induced 0.016 Assumes 10-4 veto inefficiency 
Other 0.039 6 other processes 
Total 0.42 
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*: scales with extinction; values in table assume extinction of 10-9. 

•  Reduce DIO BG with excellent energy resolution, obtained by 
careful design of the tracker. 

•  Reduce next tier BGs with extinction. 
•  Reduce cosmic ray BG with shielding and veto. 



All Estimated Backgrounds 
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Required Extinction 10-9  

•  Internal: 10-7 already demonstrated at AGS. 
–  Without using all of the tricks. 
–  Normal FNAL: 10-2 to 10-3; but better has not yet been needed. 

•  External: in transfer-line between ring and production target.  
–  Fast cycling dipole kickers and collimators. 

•  Monitoring techniques under study. 
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High Rates in the Tracker 
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•  Option: shield p from µ capture; but shield degrades resolution. 
•  Must prove that tracker design will perform robustly at these rates. 
•  Rates in live window imply an occupancy of O(1%). 

Each muon capture on Al: 2γ, 2n, 0.1 p 

Time after protons on production target  (ns) 

Initial flash. 



Attacking Backgrounds 

•  Small standalone experiments 
–  Learn how to measure the extinction. 
–  Measure proton spectrum from µ- capture on Al. 

•  UIUC group last summer at PSI. 
–  Opportunities for university groups. 

•  Special runs to measure backgrounds. 
–  Switch polarity: µ+ beam. 
–  Lower intensity and earlier live window. 
–  Lower field, look for πeν. 
–  Dedicated cosmic runs. 
–  None is a silver bullet by itself. 
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Estimated Cost and Schedule 
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Solenoids 2009 2010 2011 2012 2013 2014 2015 2016 

Conceptual Design 

Final Design/Place orders 

Construction/Installation/
Commissioning 

•  R&D going on now or soon. 
•  PSI: products of µ capture on Al. 
•  FNAL: Extinction tests; straw tests. 

•  Estimated Total Project Cost O(M$200.). 
•  Fully loaded, escalated.  Overall contingency ≈50%. 

•  Critical path: solenoids. 
–  Technically limited schedule: 

Opportunities for 
university groups. } Now 
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Mu2e In the Project X Era 
•  Project X:  high intensity proton source to replace existing Booster. 

–  Booster: 20 kW beam power at 8 GeV. 
–  Project X:  200 kW at 8 GeV (with upgrade path to 2000 kW). 
–  With corresponding upgrades at 120 GeV. 
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•  If we have a signal: 
–  Study Z dependence by 

changing stopping target.  
–  Helps disentangle the 

underlying physics. 
•  If we have no signal: 

–  Up to to 100 × Mu2e physics 
reach, Rµe < 10-18  . 

–  First factor of ≈10 can use the 
same detector. 
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Project X ICD-2 

•  2 GeV beam highly configurable. 
•  Muon beam-line might look very different. 



Project-X Related Links 

•  4th Workshop on physics with a high intensity proton 
source, Nov 9-10, 2009. 

•  Muon Collider Physics workshop, Nov 10-12, 2009. 

•  Fermilab Steering Group Report, June 2008. 
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http://www.fnal.gov/directorate/Longrange/Steering_Public/workshop-physics-4th.html 

http://www.fnal.gov/directorate/Longrange/Steering_Public/workshop-muoncollider.html 

http://www.fnal.gov/directorate/Longrange/Steering_Public/ 



Summary and Conclusions 

•  Sensitivity for 2 years of running: 
–  Discover new physics or  Rµe < 6 ≈ 10-17  @ 90% CL. 
–  Mass scales to O(10,000 TeV) are within reach. 
–  10,000 × better than previous best limit. 

•  Many SUSY@LHC scenarios predict Rµe ≈ 10-15,  
–  Expect 40 events with < 0.5 events BG. 

•  Critical path is the solenoid system: 
–  Technically limited schedule: startup possible in 2016. 

•  Project X era: 
–  If a signal, we can study N(A,Z) dependence.  
–  If no signal, improve sensitivity up to 100 ×, Rµe < O(10-18) . 

•  Opportunities for new university groups. 
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For Further Information 

•  Mu2e home page: http://mu2e.fnal.gov 
•  Mu2e Document Database: 

–  http://mu2e-docdb.fnal.gov/cgi-bin/DocumentDatabase 
– Mu2e Proposal: Mu2e-doc-388 
– Mu2e Conference presentations 
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Backup Slides 
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Combining Conversion and µeγ   
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C. Albright and M. Chen, arXiv:0802.4228, PRD D77:113010, 2008.  

MEGA 

MEG 

Mu2e 



DOE Order 413.3A 

•  CD-0: Approve Mission Need 
–  A determination is made that there is a scientific case to pursue the project. 

Some of the possible alternative means of delivering the science are presented 
as well as a coarse estimate of the cost. 

•  CD-1: Approve Alternative Selection and Cost Range 
–  One of the alternatives proposed in the CD-0 is selected and a credible cost range is 

established. 

•  Critical Decision 2: Approve Performance Baseline 
–  The technical scope of work, the cost estimate, and the construction schedule is sufficiently 

well known that the project can be completed on time and within budget. 

•  Critical Decision 3: Approve Start of Construction 
–  Engineering and design are sufficiently complete that construction, procurement, and/or 

fabrication can begin. 
•  Critical Decision 4: Approve Start of Operations 

–  The project is ready to be turned over to the organization that will operate and maintain it. 
The criteria for this stage are defined in the Performance Baseline. 
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http://www.er.doe.gov/hep/project_status/index.shtml 



Intellectual Precursors 

•  1992:  
–  Collection scheme using solenoids proposed by 

MELC collaboration at Moscow Meson Factory. 
•  1997-2005:  

– MECO proposed to run a BNL. 
–  Cancelled when entire RSVP program was cancelled. 
– Mu2e design starts from MECO design. 
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Why is Mu2e Better than SINDRUM II? 

•  FNAL can deliver ≈1000 × proton intensity. 
•  Higher µ collection efficiency. 
•  SINDRUM II was BG limited. 

–  Radiative π capture. 
–  Bunched beam and excellent extinction reduce this. 

•  So Mu2e can effectively use the higher proton 
rate. 
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Capture and DIO vs Z 
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Al 



Conversion Rate, Normalized to Al 
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Backgrounds for 2×107 s Running 
Source Events Comment 

µ decay in orbit  0.225 
Pattern Recognition Errors <0.002 
Radiative µ capture <0.002 
Beam electrons* 0.036 
µ decay in flight* <0.027 without scatter in target 
µ decay in flight* 0.036 with scatter in target 
π- decay in flight*  <0.001 
Radiative π- capture* 0.063 from protons during live gate 
Radiateive π- capture 0.001 from late arriving π- 

Anti-proton induced 0.006 
Cosmic ray induced 0.016 
Total 0.415 
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Why Look for CLFV? 
•  At our expected sensitivity: 

–  There are no standard model backgrounds. 
–  Therefore any observation is evidence for physics 

beyond the Standard Model (SM). 
•  Many beyond the SM scenarios predict 

observable rates for Mu2e. 
•  Mu2e is sensitive to new particles with masses 

up to O(10,000 TeV). 
•  Presence/Absence of particular CLFV signals 

can help remove ambiguities from LHC new 
physics signals. 
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Momentum Resolution for L-Tracker 
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MeV (Measured-Generated) Momentum 

Critical to understand 
the tails on high side 
of the distribution.   

Generated = at entrance to the tracker 

Can catastrophic 
pattern recognition 
failure produce a false 
signal?   


